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Abstract Small metal particles in the size range 0.1 lm

sometimes exhibit stress fringes near the contacting

boundary as observed in the transmission electron micro-

scope. The possible causes for these stress fields are

investigated in terms of different models: adhesion, exter-

nal forces (possibly magnetic), dislocations in the grain

boundary area or ‘‘squeezed-in’’ extra material in the grain

boundary zone. In all these cases high stresses are expected

near the contacting area. Adhesion between particles be-

comes more apparent the smaller they are and is thus very

important in nanotechnology.

Background

In 1972 Easterling and Thölén [1] first reported about some

stress fields which were observed at the contact between

small particles extracted from a copper alloy containing

coherent Fe–Ni particles (Fig. 1). This observation was

explained in terms of adhesion between the particles. The

surface energy of the system forced the particles together

essentially in the same way as liquid drops amalgamate.

The solid particles, however, only made contact across a

small area rather than merge into one big particle.

The first theory to explain a similar phenomenon, the so

called JKR-theory named after Johnson et al. [2], is based

on an energy balance. The JKR-theory is an extension of

Hertz’ treatment [3], which describes what happens when

two spheres in contact are subjected to an outside force

pair, F, acting along the central line. The contact area then

becomes finite (Fig. 2) with a radius which depends on the

particle radius, the applied force and the elastic modulus of

the particles.

a ¼ 3ð1� m2ÞFR
4E

� �1
3

; ð1Þ

F = applied force (N), R = particle radius (m), a = radius

of contact due to an applied force (m), E = modulus of

elasticity (N/m2), m = Poisson’s ratio.

When the applied force vanishes the contact radius

drops to zero in Hertz’ model. In the JKR-theory, on the

other hand, a positive contact radius is obtained even if the

applied force is zero. The surface energy of the system is

driving the system towards an energy minimum in a similar

way as water droplets attract each other to minimize the

total energy.

By forming a finite contact radius between the two

particles the outer surface area is diminished and a grain

boundary with a certain energy is formed (Fig. 2). In the

contact zone a stress field with a compressive zone in the

centre and a tensile zone further out is built up.

The sum of the three energy terms, surface energy, grain

boundary energy and stored elastic energy, has a minimum

for a finite contact radius, aadh.

ceff ¼ 2cs � cgb;

aadh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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cs = surface energy (J/m2), cgb = grain boundary energy (J/

m2), ceff = effective surface energy (J/m2), aadh = contact

radius due to adhesion (m), R = particle radius (m),

r = radius in the contact area (m), E = Young’s modulus

(N/m2), m = Poisson’s ratio, r = normal stress at the grain

boundary (N/m2).

By inserting m = 1/3 and cgb = cs/3 the following

expression is obtained containing the contact radius.

ceff ¼ 0:16
Ea3

adh

R2
; ð3Þ

It is observed in Eq. (2) that the expression for the

normal stress goes to infinity at the rim of the contact area

(r = aadh) and this is an effect of the linear theory of

elasticity. This treatment has in fact the same shortcomings

as the elastic description of a crack tip.

Integration of the normal stress across the contact area,

however, gives zero net force. This is of course the

expected result when there is no applied force.

Z
A

r � dA ¼ 0: ð4Þ

The maximum stress at the centre of contact is given by the

following expression:

rc�adh ¼
4Eaadh

3pð1� m2ÞR : ð5Þ

Opposite to Hertz’ model there is now also required a

force, Fadh, to separate the two particles.

Fadh ¼
3p
4

ceffR: ð6Þ

The JKR-theory can be refined so as better describe the

situation at the rim of the contact, but the essential result

remains. A finite contact radius is always obtained and also

a force is needed to separate the particles. Alternative

models have been proposed by Derjaguin et al. [4], the

so-called DMT-theory and by Maugis [5] but the current

experiments are at this moment not fine enough to separate

the models.

In order to simulate the contrast around the contact area

the displacements were first calculated by integrating the

normal stress using the resulting displacement from a point

force on a solid surface [6, 7]. The solving of the Howie

and Whelan equations in the spheres was then done by a

matrix method [8]. Some results from such calculations are

shown in Fig. 3. Realistic values of the surface energy

makes the contrast appear in much the same way as

observed in the electron microscope which is a strong sup-

port for the theory. The surface energy can also in principle

be obtained from Eq. (3). This equation is, however, very

sensitive to small variations in geometry and a precise value

of the surface energy is hence difficult to obtain.

A general comment on the electron microscope tech-

niques used could be in place. An investigation of small

more or less free-hanging particles is obviously a different

situation than the study of thin foils. The particles are often

vibrating or moving around, which makes precise diffrac-

tion experiments harder to perform. The other difficulty lies

in the minute size of the particles which does not facilitate

an optimal combination of imaging and diffraction. The

Fig. 1 Extracted Fe–Ni-particles which show stress contrast at

contacts

Fig. 2 Two spherical particles are making contact due to adhesion

and a finite contact radius, aadh, is obtained. Alternatively, an applied

outside force pair, F, would also result in a finite contact radius
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small contact between the particles is obviously an area of

great interest, but requires specified diffraction conditions

in the two neighbouring particles.

High-resolution, weak-beam and convergent beam dif-

fraction techniques are difficult to use to their full poten-

tials.

Experiments with other materials

It is essential here that the particles that meet have a clean

and oxide free surface. In fact, the following discussions

could equally well be applied for oxidized surfaces but the

surface energy values for clean metal surfaces are better

known. The clean condition for the iron–nickel particles

was fulfilled by extraction as mentioned above. Presumably

the magnetic force between the particles made them come

together. The magnetic force itself was, however, not

strong enough to cause the observed contrast phenomenon.

In the next experiment aluminium powder was used.

Larger aluminium particles with an oxide coating were

gently pressed against each other, the oxide scale was

presumably crushed and virgin metal surfaces met. This

resulted in visible stress fields both in bright field and dark

field (Fig. 4). The occasional observation of stress fields in

only one of two encountering particles is an effect of their

different crystallographic orientation. Tilting the specimen

makes fringes appear also in the neighbouring particle.

Gertsman and Kwok have recently in detail investigated

nanophase aluminium powder covered with an oxide layer

[9].

An alternative way to obtain clean particles is by metal

evaporation in a gas. The evaporation is usually done in an

inert gas. The higher the gas pressure the larger the parti-

cles. The particle size also increases with the atomic

number of the gas used. The evaporation here was typically

done in argon with a gas pressure of 10–20 torr. The

evaporated atoms diffuse radially out from the source

through the inert gas. A certain distance out from the

source, where the temperature is lower, particles form and

the smoke of newly formed particles follow the convection

current upwards. The whole setup bears some resemblance

with a candle flame and the process is described in [10].

The smoke particles were collected on electron microscope

grids covered with a holey carbon film. During the whole

process the large surface of the metal smoke is exposed to

the very clean gas. Accordingly the particles have very

clean surfaces when they interact. The particles form

branching networks as can be seen in the case of gold

(Fig. 5a). It is noticed that the particles are quite similar in

size (log-normal distribution). The only visible defects are

twins and many of these twins emanate from the contact

area. A similar result was observed for many other metals

as is shown below. The TEM-studies do not actually reveal

what has happened, but only the end result. As the involved

stresses are very high, it is here assumed that the twins are

associated with these. Another possibility could be that the

twinning is taking place in order to minimize the grain-

boundary energies at contact and this might also involve a

thin slice of twin along the grain boundary. Any dislocation

Fig. 3 Simulated electron microscope contrast based on the JKR-

theory of adhesion for two particles of bcc iron in contact. The

particle radius R = 1.1 · 10–7 m and cs = 2.22 J/m2. The g-vector is

perpendicular to the contact area. In the left figure the local radius at

contact is R, in the right figure the local radius is assumed to be 2R

just before contact

Fig. 4 Aluminium particles which show contrast at contact. The

particles have been gently pressed together and the oxide scale has

presumably been crushed. Electron energy 1000 keV. (a) Bright field.

(b) Dark field
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in the interior of a particle would, however, be forced out to

the surface by image forces.

Sometimes stress fields in the contact zones of the same

type as reported above were visible (Fig. 5b), but this was

in fact quite a rare occasion. When two particles adhere

according to the JKR-theory there is a zone in the centre

with quite a high energy density. Therefore a chemical

potential difference between the centre of contact and the

rim is set up, which in fact is a driving force for diffusion.

Due to the very short diffusion distances one would expect

diffusion to occur even at quite low temperatures. Most

probably many adhesion stress fields have been subjected

to diffusion (a beginning sintering) and the stress fields

have disappeared.

Small particles were also produced with chemical

methods. Such colloidal particles of various metals have

been made for a long time. The drawback with this method

is, however, that the surfaces normally are not clean, which

really is required for a study of adhesion. Hence this

method was not pursued.

Many other metals than gold were also gas evaporated.

An example with silver particles is seen in Fig. 6. Again an

adhesion stress field is observed near the contacting

boundary and also twins associated with the particle con-

tact. In Fig. 7a magnesium particles with stress fields are

Fig. 5 Gas evaporated gold

particles. (a) Branching network

with a log-normal distribution

of particle sizes. Twins are

frequently observed, often in

connection with contacts. (b)

Adhesion stress field between

gold particles

Fig. 6 Small silver particles. Twins and adhesion stress fields are

shown

Fig. 7 (a) Magnesium particles with stress fields. (b) A stress field in

the shape of a white ring is observed through two particles
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shown. In Fig. 7b a ring shaped contrast fringe is seen. This

observation of the contact area is done through the two

particles rather than from the side as was the more frequent

case.

Welding smoke is formed in much the same way as the

gas evaporated particles described above, but the condi-

tions are now more ill defined. Welding of aluminium e.g.

is taking place with an inert gas but the welding smoke

particles are of course oxidized afterwards. Some alumin-

ium particles which have been collected from a welding

process are shown in Fig. 8 and a stress field is observed.

Evaporated copper particles show the same branching

behaviour as for example gold particles. This is in fact true

for all non-magnetic particles. In Fig. 9 some copper par-

ticles are shown. Subjected to different degrees of tilt, the

contrast varied. Again twins are seen associated with the

contact area and stress fields are also observed.

An interesting parallel to the observation of copper

nanoparticles is found in a system of larger copper particles

in a powder (mean particle size 35 lm) where the indi-

vidual particles had been allowed to sinter slightly. The

whole system was then ground and polished (Fig. 10).

Twins are observed here associated with the contact zones

in much the same way as in the smaller gas evaporated

particles.

When evaporating ferromagnetic material each single

particle becomes a single magnetic domain (assuming that

the particles are not too small to be ferromagnetic nor too

big and containing many domains) and therefore the par-

ticles essentially hang together in long one-dimensional

chains. Figure 11a shows some chains of cobalt particles.

In each chain the particles have essentially the same

size—they have a common production history. When col-

lecting many of these chains they look like spider’s web.

Occasional stress fields are observed in the contact zones

(Fig. 11b).

Many cobalt particles show a regular banding due to

excessive twinning on one or more sets of parallel planes

(Fig. 12). The structure of bulk cobalt is hcp while the

equilibrium structure for small particles is fcc. This indi-

cates that the two structures have very similar energy in

small particles. A transformation between the two crystal

forms requires very little energy and is martensitic in

nature.

Some cobalt particle chains were also sintered in a

heating stage in the electron microscope. The result was

larger cobalt particles thread up regularly along a chain

with larger particles like pearls on a necklace (Fig. 13).

Apparently several of the original chains had sintered

together each to form one bigger particle and these larger

particles were evenly spread out along one chain, probably

due to the magnetic forces.

The original experiment with extracted iron–nickel

particles from a copper alloy [1] was repeated for a similar

alloy which now instead contained coherent cobalt

Fig. 8 Welding fume consisting of aluminium particles with an oxide

layer. A stress field is observed at one of the contacts

Fig. 9 Copper particles with twins and stress fields

Fig. 10 Sintered larger copper particles with twins. Mean particle

size is 35 lm
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particles. When extracted these particles also showed

abundant stress fringes at the contacting grain boundaries

(Fig. 14). The particles are in fact in contact even if it does

not look like that in the figure.

Magnetic nickel particles formed essentially one

dimensional chains (Fig. 15). Twins were again associated

with some contacts and occasional stress fields were also

observed here.

Fig. 11 (a) Chains of cobalt

particles. (b) Adhesion stress

field between cobalt particles.

Due to diffraction effects the

contrast is only visible in one

of the two particles

Fig. 12 Banded, regular twinned structure in cobalt particles due to a

martensitic transition. (a) Dark field. (b) Twinning is observed in

different planes

Fig. 13 Cobalt particles from different chains which have sintered

and formed a very regular necklace. The magnetic force between the

large cobalt particles is probably the origin of the regular structure

Fig. 14 Extracted cobalt particles showing stress field at contact. The

particles shown are in fact in contact, even if looks differently

Fig. 15 Nickel particles. (a) Adhesion stress field at contact. (b)

Twin starting from the edge of a contact
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Possible particle vibrations

The JKR-theory describes the situation at equilibrium. But

what happens from the moment when the particles first

touch until they come to rest? In fact, the JKR-theory can

be extended also to include this non-equilibrium stage [11].

The total energy during contacting is given in Fig. 16a as a

function of a coordinate, x, which describes how the par-

ticle centres approach each other. When the particles are at

their equilibrium position, x = 0, and the energy has a

minimum. The contact radius here is of course the above

mentioned radius due to adhesion.

The energy well is in fact very close to being parabolic

and therefore the particles are likely to vibrate harmoni-

cally with an angular frequency x before coming to rest.

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:78

qR2

ffiffiffiffiffiffiffiffiffiffiffiffi
E2ceff

R
3

rs
; ð7Þ

x = angular frequency (rad/s), ceff = effective surface en-

ergy (J/m2) (see above), R = particle radius (m), q = den-

sity (kg/m3), E = Younǵs modulus (N/m2).

Fig. 16 Extended JKR-theory.

(a) Upper left: The contact

radius in equilibrium. Upper

right: Different contact radii as a

function of the distance between

particle centres. Lower figure:

Total energy as a function of the

distance from equilibrium.

(b) Possible vibration patterns

in solid spheres
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To get a feeling for the expected vibration frequencies

consider particles of gold, respectively, nickel with a radius

of 30 nm. This leads to an angular frequency of

1.79 · 1010 rad/s for gold and 3.58 · 1010 rad/s for nickel.

The particles are thus supposed to vibrate longitudinally

with a very high frequency before coming to rest.

How do these high frequencies compare and maybe

couple to possible internal vibrations within the particles?

We consider here four different types of vibrations namely

dilational, shear, Rayleigh and capillary vibrations. Ray-

leigh waves are surface waves on a solid body and capillary

vibrations are surface waves encountered on a liquid drop.

If we consider the same size of particles and the lowest

mode of vibration the following frequencies are obtained

for gold: xd = 1.16 · 1011 rad/s, xs = 6.22 · 1010 rad/s,

xR = 5.60 · 1010 rad/s, xc = 2.81 · 109 rad/s. For nickel

the corresponding values are: xd = 2.59 · 1011 rad/s,

xs = 1.38 · 1011 rad/s, xR = 1.25 · 1011 rad/s, xc = 4.51

· 109 rad/s. It is noticable that these frequencies are not far

off the possible longitudinal vibration frequencies at con-

tact. The frequencies for solid bodies, however, fall above

the longitudinal vibration frequencies. A coupling between

longitudinal waves and internal vibrations is however a

tempting possibility. Figure 16b shows some possible

internal vibration patterns in spheres.

For a complete description of possible waves, Stoneley

waves should also be considered.

A Stoneley wave can propagate along the interface be-

tween certain combinations of materials and it exponen-

tially dies out from the boundary analogous to the Rayleigh

waves, which only propagate near the surface. At grain

boundaries in isotropic materials Stoneley waves could not

exist. In anisotropic materials, on the other hand, Stoneley

waves could appear along certain grain boundaries. How-

ever, some very special requirements have to be fulfilled.

Two neighbouring grains are described by their two crys-

tallographic planes which meet at the boundary and fur-

thermore by the rotation of these grains around the

common grain boundary normal. Along any such bound-

ary, Stoneley waves can only propagate along certain

directions, if they are allowed at all [12].

The riddle of the bands

The quite regular banding in cobalt particles was described

above (Fig. 12). The bands consist of twins on parallel

planes. Sometimes twins were also observed densely

spaced on other sets of planes. The very regular twinning

pattern resembles in fact a standing wave pattern. Is it

possible that the longitudinal vibrations could couple to

the (martensitic) transformation between the two crystal

structures, fcc and hcp, resulting in internal vibrations with

a high frequency?

Other models which can cause stress fringes

in the small particles

Some alternative models which could cause contrast near

the contacting boundary have also been investigated [13–

15]. Consider first an applied force pair acting on two

neighbouring particles. The obvious case to further inves-

tigate is when the two particles interact due to a magnetic

force. The force between two saturated spherical magnetic

particles is given by:

Pmagn ¼
8p
3
� B

2

l0

� R
6

x4
; ð8Þ

Pmagn = magnetic force between two spherical particles

(N), B = magnetic flux density at saturation (Vs/m2),

R = particle radius (m), x = distance between particle

centres (m), l0 = permeability of vacuum = 4p · 10)7 (H/

m), When the particles make contact, x = 2R, and

Pmagn ¼
pB2R2

6l0

: ð9Þ

Using Hertz’ original theory for contact between two

spheres subjected to an outside force [3] it is found that the

radius of contact, amagn, can be written

amagn ¼
3ð1� m2ÞPmagnR

4E

� �1
3

: ð10Þ

By using the expression above for the magnetic force the

following contact radius is obtained

amagn ¼
pð1� m2ÞB2

8El0

� �1
3

R: ð11Þ

The maximum stress at the centre of the contact zone,

rc-magn, is according to Hertz given by:

rc�magn ¼
3Pmagn

2pa2
magn

¼ B2E2

l0p2ð1� m2Þ2

 !1
3

: ð12Þ

It is noted that the maximal stress is independant of

particle radius.

The electron microscope contrast due to an applied

force, P, is calculated by first considering the displacement
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in the z-direction, uz, parallel to the force. (The g-vector is

here assumed to be parallel to the force.)

uz ¼
P

2pE
ð1þ mÞz2ðr2 þ z2Þ�

3
2 þ 2ð1� m2Þðr2 þ z2Þ�

1
2

� �
:

ð13Þ

The contrast is calculated along the same lines as above

and the results of some calculations are shown in Fig. 18.

The three particles shown have all a radius of 1.1 · 10)7 m

(same as in Fig. 17) and are acted upon with three different

force pairs: 2.44 · 10)8 N, 2.44 · 10)7 N and

2.44 · 10)6 N, respectively In Fig. 17 the expected force

between the two particles is 2.44 · 10)8 N, which in the

simulation is shown to give too low contrast. An obvious

consideration is, of course, whether the magnetic field from

the objective lens in the electron microscope could give rise

to any further force. It turns out that as long as the external

magnetic field is constant across the particles Eq. (9) is

correct (if the particles originally do not have have aligned

magnetic moments they will initially be subjected to a tor-

que to put them in register). Hence we can rule out magnetic

forces as the background to the stress fields. Furthermore the

stress fields are also observed in non-magnetic materials.

Dislocations in the grain boundary zone

Although no dislocations (as expected) were observed in

the interior of the particles due to image forces one cannot

rule out the possibility of dislocations in the grain boundary

plane. Although these dislocations could be of different

origin we have here investigated the consequences of an

edge dislocation loop lying in the boundary plane. The loop

size, A, and the Burgers vector, b, were input parameters in

this calculation. The displacement uz was taken from

Eshelbys expression [16] for the far field displacement

from such a loop.

uz ¼
bA

8pð1� mÞr ð1� 2mÞ z
r
þ 3z3

r5

� �
: ð14Þ

Fig. 17 Contact with stress

fringes in bcc iron. (a) Bright-

field image. (b) Dark-field

image

Fig. 18 Simulated contrast from particles subjected to an outside force pair, F. The particle radius is 1.1 · 10)7 m. From the left the forces are

F = 2.44 · 10)8 N, F = 2.44 · 10)7 N and F = 2.44 · 10)6 N, respectively, E = 2.11 · 1011 N/m2, m = 0.29
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The result of a contrast calculation from such a dislo-

cation loop is shown in Fig. 19 for the same spheres as

treated above but now with different values of bA. It is seen

that the requirement for a visible contrast is that bA roughly

exceeds 5 · 10)26 m3. To get a feeling for the magnitude

of this value the following example is considered. Assume

that the dislocation loop takes up half the area of contact.

Here the adhesion contact radius for this size of particles

(r = 1.1 · 10)7 m) is used. Then the (dislocation) area

becomes 1.93 · 10)16 m2. In bcc iron the lattice constant

is 2.86 · 10)10 m. The Burgers vector 1/2[111] equals

2.48 · 10)10 m and bA becomes 4.79 · 10)26 m3. This is

in fact very close to the excess volume in the adhesion

calculations.

As in the case of adhesion the dislocation loop results in

squeezed in extra material. The additional material results

in an electron microscope contrast and it is difficult to

distinguish the finer details of the different stress situations.

An alternative model for extra material in the grain

boundary zone

There might be a different background for the boundary

zone to house some extra material. Some oxide debris or

some other material could exist between the two particles.

This is the starting point for a new calculation of the

contrast. Without knowing any details of the actual situa-

tion the stress situation is here modelled by a coherent

particle in the boundary zone.

The radial dispacement in and around a coherent particle

is well-known and described by the following expressions

[17]

uðrÞ ¼ er r\r0;

uðrÞ ¼ er3
0

r2
r[r0;

d ¼ 2ða1 � a2Þ
a1 þ a2

e ¼ 3Kd

3K þ 2E
1þm

;

ð15Þ

u(r) = radial displacement (m), r0 = particle radius (m),

d = misfit between particles, a1, a2 = lattice parameters

in particle and matrix, K = bulk modulus (N/m2),

E = Young’s modulus (N/m2), m = Poisson’s ratio.

Although the expressions above are only correct for

infinite bodies they should represent a fair description of

the current situation. Some examples of the expected

contrast for specific situations are shown in Fig. 20. The

particle radius is the same as above, 1.1 · 10)7 m. Again

we have a situation with excess material in the boundary

zone. When the volume of this extra material roughly ex-

ceeds 4 · 10)26 m3 the contrast becomes visible. This is

very much in accordance with the models above.

Stresses at the contact zone

The JKR theory gives the obviously wrong result that the

stresses at the rim of the contact goes to infinity. However,

integration of the normal stress across the contact boundary

gives zero net force as expected. The normal stress at the

centre of the adhesion zone gives some idea of the mag-

nitudes involved. From Eq. (5) the stresses in Fig. 3 are

calculated to be 1.0 · 10 10 N/m2 (left) and 1.2 · 10 10 N/

m2 (right). The stress level is obviously very high.

In case of the magnetic force (Fig. 18 left) the stress in

the centre of the contact is 2.7 · 109 N/m2 when the

magnetic force is 2.44 · 10)8 N. Obviously the stress level

here is not enough to cause a visible contrast. If the

external forces were larger for some unknown reason the

stresses would also increase.

In case of dislocation loops the stress level has been

calculated using the far field approach given by Eshelby

[16] and 5 · 10)9 m from the boundary plane. The normal

stresses become 2.3 · 1010 N/m2, 4.7 · 109 N/m2 and

2.3 · 109 N/m2, respectively. Again it is seen that very

high stress levels are associated with this model.

For coherent particles the stresses are calculated

according to the following formula

Fig. 19 Simulated contrast from an edge dislocation loop lying at the

particle contact. b is Burgers vector for the loop and A its area. From

the left: (a) bA = 5 · 10)25 m3, (b) bA = 1 · 10)25 m3, (c)

bA = 5 · 10)26 m3, respectively. The particle radius is

1.1 · 10)7 m. E = 2.11 · 1011 N/m2, m = 0.29
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rrr ¼
ldv
pr3
¼ l4per3

pr3
¼ 4el: ð16Þ

The stresses in the three different simulations in Fig. 20

are 1.5 · 1012 N/m2, 5.8 · 1011 N/m2, 2.9 · 1011 N/m2,

respectively. The stress needed to cause a visible contrast

in this case is again high, around 5 · 1010 N/m2.

The stress levels for the various models in the centre of

the contact have been calculated with the help of elasticity

theory. Using the JKR-theory at the rim of the contact

would yield infinitely high stresses which obviously is

wrong! The very high stress levels obtained (compare with

the yield stress) could indicate that one has to be a bit

cautious with bulk elastic theory in such small volumes. On

the other hand the high stresses seem to be necessary for

the observed electron microscope contrast.

Further situations to consider

Is it possible to foresee another situation causing the con-

trast? Could it, for example, be possible that an oxide layer

formed around the two particles after the first contact and is

it possible that this oxide squeezed the particles together?

The stress fields are however seen in a large number of

different metals, such as are prone to oxidize and such that

are not. Furthermore the model should be able to treat both

magnetic and non-magnetic materials. The only model

which today copes with all the situations is the original

model based on adhesion.

Conclusion

In the contact zone between small particles there is

sometimes observed a stress field. This is the case both for

magnetic and non-magnetic particles. A model based on

adhesion between the particles gives results which quite

well coincide with the experiments. Other models based on

an external force (e.g. magnetic), dislocations and coherent

precipitates are also tested.

It is found that squeezed in material, depending on

external or internal forces is common to all the models. The

amount of squeezed in material essentially decides the

contrast. Adhesion between particles becomes more

apparent the smaller the size and is thus very important in

nanotechnology.
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Fig. 20 Simulated contrast from the stress field of a coherent particle

lying with its centre at the contacting point between two particles. The

particle radius (of the large particles) is 1.1 · 10)7 m.

E = 2.11 · 1011 N/m2, m = 0.29. From the left: � = 5.0;

r0 = 2.5 · 10)9 m, � = 2.0; r0 = 2.5 · 10)9 m and � = 1.0;

r0 = 2.5 · 10)9 m, respectively
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